Outlet units now available

Latest Posts

Lithium-ion Batteries vs Hydrogen Fuel Cells in Electric Vehicles

Today, most electric vehicles use batteries, often based on Lithium-ion or Lead-acid chemistry. These batteries allow storing energy that was produced away from the vehicle and subsequently use that energy to create mechanical motion and make an e-bike, car or motorcycle move forward. Hydrogen Fuel cells, a rather old technology, created in 1839 by Sir William Grove and refined through the years, also allow storing energy in the form of hydrogen to power electric vehicles. Like a battery, a fuel cell harnesses a chemical reaction to produce energy in the form of electricity. More specifically, Hydrogen fuel cells generate electricity, water and heat from hydrogen and oxygen.

 

Fuel cells consist of an anode and a cathode surrounding an electrolyte called a synthetic polymer membrane which separates hydrogen and oxygen while only permitting the passage of certain ions (H+ or protons). Hydrogen atoms enter the fuel cell at the anode where they are stripped of their electrons. These electrons travel through the vehicle’s circuit to the cathode in the form of electricity. The positively charged hydrogen atoms (or protons) travel through the membrane to join with the oxygen and the electrons in order to eventually form water. Each individual fuel cell produces relatively low amounts of current and voltage and, like lithium-ion cells, therefore need to be stacked together in series and in parallel to reach the target voltage and max current required by the vehicle they are powering.

 

Hydrogen Fuel Cells vs Lithium-ion Batteries - Detailed functioning of a Hydrogen Fuel Cell

 

The beauty of hydrogen fuel cells is that you get electricity, heat and (potable) water as outputs with hydrogen and oxygen as inputs. Oxygen is abundant in the atmosphere while hydrogen is the most common element in the universe. However, hydrogen tends to bond very easily with other elements. Therefore, it has to be artificially isolated before being usable as fuel through processes that are quite expensive and energy-consuming.

 

Hydrogen used in fuel cells has the energy to weight ratio ten times greater than lithium-ion batteries. Consequently, it offers much greater range while being lighter and occupying smaller volumes. It can also be recharged in a few minutes, similarly to gasoline vehicles. However, Hydrogen fuel cells also come with a lot of drawbacks. First of all, hydrogen is mainly obtained from water through electrolysis which is basically a reversed fuel cell and takes electricity and water to produce Hydrogen and Oxygen. The source of this electricity can range from renewables to coal depending on where you are in the world, hence hydrogen extraction can be very clean or dirtier than a typical gasoline car. Nowadays, sadly, it is more likely to be the latter simply because of the way the majority of the electricity is produced on Earth.

 

Other issues are that storing hydrogen as a gas is expensive and energy-intensive, sometimes as much as half the energy, it contains, and even more so when it is stored as a liquid at cryogenic temperatures. In addition, it is highly flammable, tends to escape containment and reacts with metals in a way than renders them more brittle and prone to breakage. Eventually, although it is everywhere around us, hydrogen is hard, dangerous and expensive to produce, store and transport.

 

Fuel cells can also only operate with water, not steam nor ice. Therefore, managing internal temperatures is essential and heat has to be constantly evacuated through radiators and cooling channels which add considerable amounts of weight. Restarting in cold temperatures can also be very complicated and impractical in locations that often experience temperatures below freezing point.

 

Detailed functioning of a Hydrogen Fuel Cell

To conclude, hydrogen fuel cells offer a potentially very clean, energy-dense and easy to recharge energy source for vehicles and other systems, but are currently complicated, expensive and dangerous to operate. In comparison, Lithium-ion batteries, although less energy-dense and slower to recharge, are as clean, much cheaper, easier and safer to handle. More specifically, cylindrical lithium-ion cells like those used in the SIERRA and the FX are very stable and safe to use. In the future, once the technology is sufficiently developed and the drawbacks mentioned above addressed, hydrogen could be a great solution to increase range and decrease charging time in electric vehicles. But for now, lithium-ion technology is the best solution to offer very practical and high-performance e-bikes and other vehicles.

8 comments

  1. Chad says:

    Hydrogen fuel cells cars are as fast as manufacturers want to make them. So far, they are not trying to make sports cars.

    https://www.youtube.com/watch?v=j8p9bugBNN0

    1. Eliott Wertheimer says:

      Absolutely! For high performance vehicles, with their greater energy density they have arguably more potential than lithium-ion cars in that regard. However, for the mass market, all the drawbacks mentioned above have been significantly slowing down the development of this technology in the automotive industry.

  2. Neville P says:

    How about other types of fuel cells can we discuss the advantages of other fuel cells compared to lithim ion batteries ?

    1. Eliott Wertheimer says:

      Hi Neville,
      We will certainly look into this for one of our next articles.
      All the best,
      Eliott

  3. Daniel says:

    Interesting piece. I am missing the most important, in my view, argument against hydrogen. Hydrogen is made from electrolysis, an energy-intensive process. The theoretical maximum efficiency of this electrolysis, as far as i am aware, is 60%. So in this step alone we are throwing out 40% of the energy input. Next, the theoretical maximum efficiency, as far as i am aware, for a fuel-cell is 60%. So in total we are throwing out at least 64% of the energy input. While for batteries the efficiency is pretty close to 100%. Yes you can produce the hydrogen using f.ex. wind only but if we are ever going to get the coal/fossil out of the power grid we can’t throw away 2/3 of the renewable energy production.

  4. Patricia hodgins says:

    There is technology out there that can increase the efficiency of fuel cells by 30 %….. by using a polymer membrane developed by a company called ionomr. Check it out.

  5. Carolyn says:

    No doubt there are some serious engineering challenges to make Hydrogen Fuel Cell vehicles feasible . But the alluring benefits of its power to weight advantage are to great to ignore. To fully transform the transportation and heavy haul/lift industry we need the advantage of the Hydrogen Fuel . I cant imagine batteries ever having that power to weight ratio not to mention cold weather use. I can envision the battery as a urban commuter solution but we will need every tool in the toolbox to get to the next level.
    We need to extract all energy efficiency processes from methane flare off at landfills gas flare off at oil and gas extraction off peak load electricity at late night solar wind perhaps someday Thorium reactor technology to create a good way to extract Hydrogen economically and to scale up

Leave a Reply

Scroll to top